主页 返回 进入列表
总根
>计算机与教育
>课程
>高等教育课程
>本科课程
>模式识别与人工智能
>ZSTU-(2020-2021)-1
>学生作业
>2018329621219费恩来
作业8
import tensorflow as tf
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
weight = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
wx_plus_b = tf.matmul(inputs, weight) + biases
if activation_function is None:
outputs = wx_plus_b
else:
outputs = activation_function(wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data 全文(Full Article): https://yvsou.com/dc/single.php?groupid=28.218.81608.81609.81613.85931.85932.83187.86157&pid=1338528&startgroup=
import numpy as np
def add_layer(inputs, in_size, out_size, activation_function=None):
weight = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
wx_plus_b = tf.matmul(inputs, weight) + biases
if activation_function is None:
outputs = wx_plus_b
else:
outputs = activation_function(wx_plus_b)
return outputs
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data 全文(Full Article): https://yvsou.com/dc/single.php?groupid=28.218.81608.81609.81613.85931.85932.83187.86157&pid=1338528&startgroup=