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  Abstract—The 'black box' phenomenon and limited 

interpretability present significant obstacles in machine 

learning and deep learning for portfolio management. 

Additionally, standard metrics for interpretability in machine 

learning often struggle to effectively elucidate model features in 

portfolio decision contexts. This research aims to address these 

challenges by introducing a methodology for generating easily 

interpretable portfolios. The approach involves using Random 

Forest feature importance analysis within multi-factor models, 

followed by clustering based on stock factors. Portfolios are 

generated using the Mean-CVaR model, and the effectiveness of 

the proposed explainable portfolios is evaluated through 

comparative analysis with two machine learning interpretability 

tools: SHAP and Permutation methods. 

 
Index Terms—Interpretability, Multi-factor Mode, Stock 

Clustering, Random Forest, Portfolio. 

 

I. INTRODUCTION 

The application of machine learning techniques in 

investment decision-making has seen a significant rise, 

highlighting the need to improve interpretability to address 

the "black box" problem, making research in this area crucial. 

The origins of conventional portfolio design strategies trace 

back to the Capital Asset Pricing Model (CAPM) introduced 

by Sharpe [1], the first theoretical framework to statistically 

elucidate the correlation between stock returns and market 

risk, including idiosyncratic risks of individual stocks. CAPM 

established the foundation for developing portfolio design 

methodologies based on market risk assessment. Eugene 

Fama [2] enhanced the explanatory capability of stock returns 

by incorporating additional components beyond the scope of 

CAPM. 

In the 21st century, big data has given researchers 

unparalleled access to extensive data resources, yet 

presenting obstacles in identifying non-linear interactions 

within large market data volumes. Machine learning 

technology, renowned for handling non-linear and non-

stationary data, has become a popular tool in portfolio design 

research. Huang [3] devised a technique using Support Vector 

Regression (SVR) and Genetic Algorithms (GAs) to 

construct effective portfolios, optimizing model parameters 

to select the best subset of input variables for the SVR model. 

In portfolio creation, J. Xiujuan [4] introduced the Random 

Forest Support Vector Machine (RFSVM), using random 

forests to process and reduce the dimensions of initial data 
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variables, thereby enhancing decision-making reliability and 

efficacy. Shen [5] proposed the VIKOR-DANP model for 

improved stock selection, mitigating limitations of 

conventional regression models. This methodology assesses 

stocks using criteria like profitability and cash flow earning 

ability, determining modified scoring weights for identifying 

high-quality growth stocks. 

Nevertheless, the interpretation of investment portfolios 

generated through machine learning faces challenges: the 

inherent "black box" nature of these algorithms complicates 

understanding [6], and some methodologies focus on 

selecting high-return stocks based on predicted return series, 

failing to capture the relationship between selected stocks and 

cross-sectional return explanatory factors, potentially 

overlooking stocks correlated with return characteristic 

factors. 

Within the domain of machine learning, interpretability is 

defined as "the capacity to elucidate or convey information in 

a comprehensible manner to human beings" [7]. This is 

crucial in stock market applications for investors and model 

researchers to enhance investing methods. The primary 

objective is to identify the elements impacting prediction 

outcomes, with the ultimate goal of making them 

understandable. Taha Buğra Çelik [8] used Explainable 

Artificial Intelligence (XAI) techniques to evaluate forecast 

reliability, focusing on comprehensive predictive efficacy 

using XAI indicators, rather than solely on accuracy. This 

approach aims to reduce suboptimal decision-making risks by 

investors. Ribeiro[9] introduced Local Interpretable Model-

Agnostic Explanations (LIME) to address transparency and 

interpretability challenges in machine learning algorithms. 

LIME achieves local interpretability by training an 

interpretable model near the prediction. Similarly, Lundberg 

S M [10] employed Shapley values, derived from cooperative 

game theory, to quantify each feature's impact on machine 

learning model predictions, ensuring equitable reward 

distribution based on marginal contributions. However, 

Kyung Keun Yun [11] noted that LIME and SHAP do not 

address temporal and collective feature dependencies in stock 

sequences. Yun proposed integrating evolutionary algorithms 

with machine learning regression and optimal feature 

selection for stock price prediction, enhancing local 

interpretability by capturing significant feature behaviors 

over certain periods, thereby providing dynamic 

interpretations for short-term data. Current literature 

primarily focuses on feature selection and interpretability 
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indicator development to explain machine learning model 

outputs from various perspectives. In machine learning 

portfolio creation, however, the exclusive emphasis on model 

prediction interpretability still challenges the effective 

application of analytical results in portfolio construction 

decision-making. There is often a tendency to reinforce 

confidence in a model's predictive capabilities, while 

overlooking the connection between interpretability metrics 

and portfolio formation methods, as well as the subsequent 

portfolio building process. 

Hence, this article presents an exceptionally interpretable 

method for constructing portfolios. It does so by aggregating 

specific stock factors within a multi-factor model framework, 

establishing a clear link between factor-driven portfolio 

construction strategies and machine learning interpretive 

indicators. Including high-importance factors in the model 

not only enhances its interpretability for investment decision-

making but also mitigates the 'black box' issue associated with 

machine learning, addressing the challenges faced by 

traditional interpretive index methods in intuitive feature 

interpretation within portfolio decision-making contexts.         

This approach employs machine learning feature importance 

analysis to pinpoint the most predictively significant 

influencing factors, leading to a strategy for constructing 

clustered portfolios using these identified factors. Grounded 

in empirical evidence and bolstered by clear economic 

reasoning, the selected equities demonstrate superior 

performance across key predictors. By forging this link 

between machine learning interpretability and portfolio 

construction strategies, we offer a new framework for 

financial practice, enabling more effective application of 

machine learning model predictions in portfolio strategy 

formulation. Moreover, it assists investors in better 

understanding these stock selection strategies when 

constructing their actual portfolios. 

II.  DATA AND METHODOLOGY 

This study begins by employing the Random Forest 

technique to identify key factors influencing stock returns 

during the specified timeframe. These factors form the 

foundation of the analysis. Bayesian optimization is then used 

to fine-tune the Random Forest model's parameters for each 

training period. With these optimized parameters, the model 

assesses the significance of each factor in predicting returns. 

The model's interpretability is enhanced through the 

distribution of factor importance, focusing particularly on the 

two most important factors as the base. 

The dataset of stock factors undergoes MiniBatchKMeans 

clustering to account for dynamic market changes. We 

employ a dynamic clustering method with a sliding window 

to capture variable trends monthly. The time-series data of 

stock factors are divided into overlapping subsets, each 

analyzed within a sliding window at a fixed step length. 

Clustering is performed in these windows to group factor 

features. The resulting clusters, which represent various stock 

factor characteristics, undergo statistical analysis. 

Concurrently, these clusters are assessed and prioritized 

based on fundamental variables identified by the Random 

Forest algorithm. Stocks most frequently appearing in top-

rated clusters are selected for investment.To balance portfolio 

returns and risk management, the Mean-CVaR model is 

applied for portfolio creation. A genetic algorithm determines 

the optimal investment weights for the selected stocks. The 

research flowchart in Fig. 1 details the sequence of these steps.  

The following section provides a concise overview of the 

primary machine learning methodologies and models used in 

this study.

 
Fig. 1.  Research flow chart 

 

A. Bayesian Optimization Random Forest 

The prediction of stock returns over time is frequently 

influenced by various factors, making the identification of the 

most significant explanatory elements a considerable 

challenge. Among a range of machine learning algorithms, 

Random Forests [12] are particularly adept at elucidating 

factor importance due to their tree structure. Therefore, this 

study employs the Random Forest algorithm to predict stock 

returns, leveraging its inherent feature importance 

distribution tool. A key aspect of this approach is determining 

the ideal hyperparameters of the Random Forest model to 

achieve high performance and ensure generalizability [13]. 

Traditionally, cross-validation techniques are used to 

identify suitable hyperparameters by iteratively training and 

validating the dataset, evaluating the model's performance 

across different configurations, and selecting the optimal 

values. However, this method can be computationally 

intensive, especially when handling large volumes of stock 

factor data inputs. To address this, the study incorporates 

Bayesian optimization [14], a method for iterative 

optimization aimed at finding a global optimum within a 

limited number of iterations. This technique enhances the 

efficiency of hyperparameter identification. 

In this study, the Bayesian optimization parameters for 

Random Forest include the number of decision trees, the 

maximum depth of each tree, the minimum sample size for 

splitting an internal node, and the minimum sample size for a 

leaf node. These parameters directly affect the model's 

performance and generalizability. Bayesian optimization uses 

a Gaussian process model to emulate the relationship between 

the target function and model parameters. Through iterative 

parameter selection and Gaussian process model updates, the 

ideal parameter combination is determined, potentially 

addressing overfitting and underfitting issues, and improving 

feature element importance. 

B. Muti-Factor Models 

Barr Rosenberg [15] was the pioneer in introducing the 

multi-factor model, a methodology designed to explain 

fluctuations in stock returns by incorporating multiple factors. 

In this model, the returns of stock securities are represented 

as a linear combination of various factors. The fundamental 

structure of the multi-factor model is characterized as follows: 
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                          (1)  

The rate of return of asset i at time t is denoted by , 

while the rate of return of the jth factor at time t is represented 

by . The excess return of asset i is denoted by ∝𝑖 , the 

return of asset i to the sensitivity coefficient of j is represented 

by 𝛽𝑖,𝑗, and the error term of asset i at time t is denoted by 𝜖𝑖,𝑡. 

Multifactor models provide robust decision support for 

investors by assessing asset risk and return attributes. 

However, in practice, different factors may have varying 

cyclical impacts on asset returns. To address the challenge of 

identifying these cyclical influences in stock data, this article 

employs machine learning techniques to dynamically model 

stock feature data for each period. This approach allows for 

the selection of an optimal combination of factors that best 

suits the specific characteristics of that period, thereby 

enhancing the model's relevance and accuracy in different 

market conditions. 

C. MiniBatchKMeans Cluster Mean-CvaR Portfolio 

To efficiently capture dynamic factor changes and select 

robust explanatory factors during portfolio optimization, this 

section employs a sliding window methodology combined 

with MiniBatchKMeans clustering [16]. This clustering 

method, suitable for extensive datasets, groups data points 

into K clusters based on similarity and shared attributes, 

minimizing similarities between different clusters. 

The approach involves partitioning stock factor time-series 

data into overlapping subsets. Within each window, 

clustering operations are performed on the factor features. 

Initially, factor data is divided into fixed-length windows at 

each time frequency. After aggregating data within a window, 

it is systematically slid by a predetermined step length. The 

clustering process is repeated for new factor data in each 

window to accommodate cyclical variations. Bayesian 

optimization is used to determine the optimal sliding window 

length, step duration, and cluster quantity for each period. 

MiniBatchKMeans clustering results in clusters reflecting 

various stock factor characteristics, which undergo statistical 

analysis. Robust feature factors that significantly explain 

stock returns, as identified by the Random Forest algorithm, 

are combined. Scores are assigned to each cluster based on 

these factors, with the overall score of each cluster being 

calculated. The highest-scoring clusters are used to select 

frequently appearing stocks in each period, indicative of a 

strong association with specific factors. 

Tail risks in the portfolio, due to deviations from normality 

in real-world stock return distributions, are evidenced by 

skewness and kurtosis. To address this, the Mean-CVaR 

model [17] is chosen for portfolio construction using selected 

equities. Unlike traditional mean-variance and mean-

semivariance models, Mean-CVaR more effectively accounts 

for asymmetric distribution of stock returns and tail risks, 

thereby mitigating potential portfolio losses. A detailed 

description of the utilized model is provided below: 

Assume investors allocate their initial capital into a 

portfolio of high-risk assets within the financial market. Ri 

denotes the random rate of return for each high-risk asset i, 

while ri=E(Ri) represents the expected rate of return. The 

proportion of the investor's portfolio at risk in asset i is 

denoted by xi, and the weight vector of the portfolio is x=(x1, 

x2,..., xn). Investors aim to optimize the negatively weighted 

sum of the portfolio's expected return and risk, while ensuring 

that no constraints are violated. One of the ways in which risk 

is quantified is through the conditional value at risk (CVaR). 

Suppose an investor allocates their initial wealth to n 

different risky assets in the financial market. For each risky 

asset i, we define Ri as its random rate of return and ri=E(Ri) 

as its expected rate of return. The investor's investment 

proportion in risky asset i is denoted as xi, and the portfolio's 

weight vector is x=(x1, x2, ..., xn). Under the premise of not 

violating any constraints, the investor aims to maximize the 

negative weighted sum of the portfolio's expected rate of 

return and risk. Here, risk is represented in the form of 

Conditional Value at Risk. 

The expected return on the investment portfolio is: 

                                           (2) 

The return on the investment portfolio is: 

                                                                (3) 

A portfolio's CVaR is defined as the expected loss in 

excess of value at risk (VaR). At the α confidence level, VaR 

is defined as the worst α% case of the portfolio return, that 

is : 

                                  (4) 

CVaR is defined as the expected loss when the rate of 

return is lower than VaR, that is: 

                                               (5) 

Therefore, our objective function is: 

                                                (6) 

Among them, λ is the risk aversion coefficient, which 

indicates the investor's aversion to risk. 

The constraints are: The investment weight of each stock 

is greater than 0, that is, xi >= 0, i=1,2,...,n. The sum of 

investment weights is 1, that is, ∑xi= 1, i=1,2,...,n. 

The above is the basic form of the mean-CVaR model, 

which provides a framework for quantifying the trade-off 

between expected return and risk for investors. By solving 

this optimization problem, investors can determine the 

portfolio allocation that achieves the maximum expected 

return while satisfying their risk aversion. 

D. Data Selection 

This study's sample includes every constituent stock of the 

CSI All-Share Index during the periods of January to June 

2018 and January to June 2019, with data collected daily. 

Data preprocessing was essential to ensure accurate and 

reliable processing by the machine learning models. This 

involved filling missing values, addressing outliers, and 

normalizing data dimensions. 

Stock returns were predicted using the Random Forest 

algorithm, optimized via Bayesian optimization. For each 

prediction period, stock factor data was split into training and 

test sets in an 8:2 ratio. Given the importance of input variable 

selection in time series prediction, sixteen factors 

representing various market characteristics of each stock 

were selected. These include liquidity, valuation, momentum, 

size, volatility, leverage, technical indicators, among others. 
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The specific categories of these factors are detailed in Table 

I, located in the appendix, which provides comprehensive 

information about the sixteen stock feature factors. 

The model's accuracy was evaluated using three metrics: 

Mean Absolute Error (MAE), Mean Squared Error (MSE), 

and Root Mean Squared Error (RMSE). 
TABLE I     STOCK FACTOR TABLE 

Share 

Turnover 

Absolute 

Return to 

volume 

Earnings to 

Price Ratio 

Operating Cash 

Flow to Price 

Ration 

Long Term 

Reverse 

Momentum 

Change 

Float 

Capitalizatio

n 

Firm Size 

Book to 

Market 

Equity 

Idiosyncratic 

Volatility 

Market 

Leverage 

Down to Up 

Volatility 

ASI MACD ATR RI 

 

III. RESULTS AND DISCUSSION 

The efficacy of the Random Forest model in fitting stock 

return data is significantly influenced by the choice of 

hyperparameters. In this study, the Bayesian optimization 

method is utilized to fine-tune the model's parameters, 

enhancing its prediction accuracy for stock returns. The 

optimal parameters determined for each period, which 

contribute to the model's enhanced performance, are 

presented in Table II. 

A. Comparative Analysis of Bayesian-Optimized Random 

Forest Ablation Experiments 

To highlight the advantages of Bayesian optimization, this 

study compares the improvements in prediction performance 

and reduction in model error of Random Forest models before 

and after optimization. 

1) Feature Significance 

Following Bayesian optimization, the Random Forest 

model shows a more distinct distribution in feature 

importance, particularly in highlighting the key stock factors, 

compared to its pre-optimization state. This optimized model 

more effectively emphasizes the explanatory capability of the 

two fundamental components, which are crucial in predicting 

the rate of return. This enhancement in focusing on the most 

influential factors for return prediction is illustrated through 

the data feature distribution charts for 2018 and 2019, as 

depicted in Figs. 2, 3, 4, and 5. These figures clearly 

demonstrate the changes in feature importance distribution, 

underscoring the improved focus and clarity brought about by 

Bayesian optimization in understanding stock return drivers. 

 
TABLE II  RANDOM FOREST BEST PARAMETERS TABLE 

 

Maximum 

depth of 

each tree 

Minimum 

leaf node 

samples 

Fewest 

sample 

splits 

number of 

decision 

trees 

2018.1 6 8 16 442 
2018.2 7 9 13 445 

2018.3 7 9 18 221 

2018.4 7 9 7 460 
2018.5 6 8 3 109 

2018.6 7 4 20 492 

2019.1 8 2 17 478 
2019.2 5 1 3 100 

2019.3 6 4 18 161 

2019.4 8 3 4 66 
2019.5 7 9 7 460 

2019.6 5 1 20 429 

 

 

 

 

 

 

 
 

Fig.  2.  2018 Unoptimized Random Forest Feature Distribution Chart 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.  3.  2018 Bayesian Optimized Random Forest Feature Distribution Chart 
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Fig.  4.  2019  Unoptimized Random Forest Feature Distribution Chart 
 

    
 
Fig. 5.  2019  Bayesian Optimized Random Forest Feature Distribution Chart 

2) Pre-optimization and post-optimization error 

analysis 

To evaluate the effectiveness of Bayesian 

optimization, this study assesses the error magnitude in 

the Random Forest model before and after its application. 

The comparative analysis, focusing on changes in error 

metrics, is presented in Tables Ⅲ and Ⅳ. These tables 

provide detailed insights into the model’s performance, 

highlighting the reduction in prediction error achieved 

through optimization. 

 

Table Ⅲ  2018  Pre-optimization and post-optimization error analysis 

 Pre-optimization MAE MSE RMSE Post-optimization MAE MSE RMSE 

January  0.139 0.035 0.186  0.132 0.032 0.180 
February  0.131 0.032 0.180  0.126 0.031 0.175 

March  0.134 0.032 0.180  0.129 0.030 0.174 
April  0.142 0.035 0.188  0.135 0.032 0.180 
May  0.138 0.034 0.184  0.132 0.032 0.179 
June  0.135 0.033 0.180  0.129 0.030 0.174 

Table Ⅳ  2019  Pre-optimization and post-optimization error analysis 

 Pre-optimization MAE MSE RMSE Post-optimization MAE MSE RMSE 

January  0.140  0.033  0.181   0.135  0.031  0.176  
February  0.135  0.030  0.173   0.130  0.028  0.166  

March  0.143  0.034  0.185   0.135  0.031  0.177  
April  0.142  0.033  0.182   0.136  0.031  0.177  
May  0.139  0.033  0.182   0.133  0.031  0.176  
June  0.145  0.034  0.185   0.136  0.031  0.177  

 

3) Baseline Model Comparison 

The study compares the prediction error of the 

Random Forest model optimized via Bayesian 

methods with that of various baseline models to assess 

relative performance. Specifically, the predictive 

efficacy of stock return rate predictions using the 

KNN algorithm [18], Decision Tree method [19], and 

XGboost algorithm [20] is examined. The 

comparative results of each model are depicted in Figs. 

6 and 7, highlighting the differences in prediction 

accuracy. 

Upon reviewing these figures, it becomes apparent 

that the Bayesian-optimized Random Forest (BORF) 

model consistently exhibits lower error metrics (MAE, 

MSE, RMSE) compared to the standard Random 

Forest, KNN, and Decision Tree models. This 

observation indicates that the BORF model provides 

more accurate predictions of stock return rates, 

demonstrating the effectiveness of Bayesian 

optimization in enhancing model performance.
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Fig. 6.   Model Error Metrics Graph for 2018 

 

 
Fig. 7.   Model Error Metrics Graph for 2019 

B. Analysis of clustered portfolio construction results  

MiniBatchKMeans clustering is employed to create distinct 

clusters representing stock factor characteristics. Based on 

the Random Forest algorithm's analysis for each period, the 

two most influential features in explaining returns are 

identified as the base factors. Clustering portfolio 

construction around these base factors establishes a direct link 

between the construction process and the machine learning 

model's interpretability indicators. The weighted scores of the 

base factors in each cluster highlight the clusters most 

strongly associated with key return drivers. Specifically, the 

cluster with the highest score is prioritized for investment. 

For portfolio construction, the top five stocks appearing 

most frequently at the summit of the highest-scoring cluster 

are selected. This approach ensures that the chosen stocks are 

closely aligned with the identified base features influencing 

returns. Table Ⅴ details the number of clusters and the 

optimal monthly sliding window parameters obtained 

through Bayesian optimization, providing insights into the 

clustering methodology and parameter selection process. 

 

TABLE Ⅴ   NUMBER OF CLUSTERS AND SLIDING WINDOW PARAMETERS 

 Number of clusters Steps Window length 

2018.01 2 1 20 

2018.02 

2018.03 

2018.04 

2018.05 

2018.06 

2019.01 

2019.02 

2019.03 

2019.04 

2019.05 

2019.06 

3 

3 

3 

4 

3 

6 

2 

4 

4 

2 

2 

4 

2 

3 

6 

3 

5 

3 

3 

3 

5 

1 

15 

20 

18 

20 

20 

20 

15 

20 

20 

20 

10 
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C. Model interpretive analysis 

In 2018 and 2019, the Random Forest algorithm, optimized 

through Bayesian optimization, was used to forecast monthly 

stock returns from January to June. Each month, the two 

features with the highest explanatory power for returns were 

identified as the foundational factors for the training cycle. 

This study leverages the Random Forest model’s inherent 

feature importance distribution to select features for 

predicting model outcomes. 

In 2018 and 2019, the Random Forest algorithm, optimized 

through Bayesian optimization, was used to forecast monthly 

stock returns from January to June. Each month, the two 

features with the highest explanatory power for returns were 

identified as the foundational factors for the training cycle. 

This study leverages the Random Forest model’s inherent 

feature importance distribution to select features for 

predicting model outcomes. 

To evaluate the interpretability of this feature importance 

distribution, two machine learning interpretability tools, 

SHAP (SHapley Additive Explanations) [21] and 

Permutation Importance [22], were employed. SHAP, 

inspired by the Shapley value from game theory, assigns a 

"fair" contribution degree to each feature by calculating the 

difference in model predictions with and without each feature. 

On the other hand, Permutation Importance measures a 

feature's significance by observing the decrease in model 

performance when each feature subset is scrambled and 

evaluated for its impact on performance. 

Tables Ⅵ and Ⅶ present a comparison of these three 

methods regarding feature selection and feature weights in 

model prediction results. As indicated in these tables, the 

Random Forest model's feature importance distribution 

consistently selects the two most significant features across 

most test data periods, demonstrating its stability and 

reliability across all three interpretability methods. 

D. Mean-CVaR portfolio numerical analysis 

This segment evaluates the monthly performance of stock 

portfolios across different investment weights. To further 

assess the effectiveness of the proposed model, comparisons 

are made with major indices such as the CSI 300, Shanghai 

Composite Index, and Shenzhen Component Index, alongside 

equal-weighted portfolio models. 

The study employs genetic algorithms for optimizing the 

Mean-CVaR model's weights, considering the need for a 

multivariate solution under multiple constraints. Genetic 

algorithms, simulating genetic and natural selection processes, 

are adept at finding global optimal solutions, avoiding the 

limitations of local optima that conventional algorithms 

might encounter. 

The CVaR for each stock is calculated using the Monte 

Carlo method, followed by the application of a target function 

to determine optimal weights for each period, as shown in 

Tables Ⅷ and Ⅸ. The portfolio's returns are derived from 

these weights, and the results are compared with other models 

and key market indices, as detailed in Tables Ⅷ and Ⅴ. 

Furthermore, Figures 4 and 5 contrast the returns of portfolios 

constructed using SHAP and Permutation Importance 

methods. 

Tables Ⅷ and Ⅴ present the average monthly returns 

across various months and years, including comparisons with 

the Mean-CVaR model, Shanghai Composite Index, CSI 300, 

and Shenzhen Component Index. The distribution of returns 

from portfolios built using the method described in this paper 

is compared with those constructed using other 

interpretability methods in Figs. 8 and 9. Through this 

comparative analysis, we can draw the following conclusions: 

1. Performance Comparison: The Mean-CVaR model 

demonstrated superior performance relative to other 

reference models and indices, achieving an average monthly 

return of 2.92% during the study period. This was notably 

higher compared to the Shanghai Composite Index (1.14%), 

CSI 300 (1.05%), and Shenzhen Component Index (1.02%). 

Additionally, the equal-weight model also showed strong 

profitability with an average monthly return of 2.55%. 

2. Risk Analysis: The models and indices exhibited 

comparable performance in terms of return volatility, with 

standard deviations ranging from 0.053 to 0.070. Specifically, 

the Mean-CVaR model had a volatility of 0.068, slightly 

higher than the other indices but still within an acceptable 

range when considering all models and indices. 

3. Interpretability Portfolio Returns: Comparing the 

investment portfolio construction model with SHAP and 

Permutation Importance methods revealed that the Random 

Forest investment portfolio incurred fewer losses in most 

months of the 2018 bear market. With an average monthly 

return of 0.32%, it significantly outperformed the other two 

interpretability methods. During the bull market phase of 

2019, the Random Forest portfolio showed superior and more 

consistent performance, averaging 7.95% per month, 

compared to 4.95% for SHAP and 6.71% for Permutation 

portfolios. 

In summary, the Mean-CVaR model, while not surpassing 

the Shanghai Composite Index in terms of the highest 

monthly return, demonstrated a notable advantage in overall 

returns, stability, and risk resistance during the analysis 

period. This strength stemmed from the Mean-CVaR 

investment portfolio, constructed based on the interpretative 

base factors identified by the Random Forest model. The 

comparative analysis with portfolios generated using 

different interpretability methods highlighted the efficacy of 

the portfolio construction approach outlined in this paper, 

especially in terms of asset allocation and utility. This 

underscores the potential of the proposed method in 

enhancing portfolio performance and managing investment 

risks more effective
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 TABLE Ⅵ   2018  FEATURE SELECTION AND NORMALIZATION OF WEIGHTS 

 Random Forest Weights SHAP Weights Permutation Importance Weights 

2018.01 
Share_Turnover 0.59 Share_Turnover 0.57 Share_Turnover 0.55 

RI 0.41 RI 0.43 RI 0.45 

2018.02 

RI 0.85 RI 0.86 RI 0.93 

Down_to_Up_ 

Volatility 
0.15 

Down_to_Up_ 

Volatility 
0.14 Float_Capitalization 0.07 

2018.03 

Down_to_Up_ 

Volatility 
0.7 

Down_to_Up_ 

Volatility 
0.69 

Down_to_Up_ 

Volatility 
0.71 

RI 0.3 RI 0.31 RI 0.29 

2018.04 
RI 0.7 RI 0.62 ATR 0.68 

Share_Turnover 0.3 ATR 0.38 Share_Turnover 0.32 

2018.05 
Float_Capitalization 0.55 Float_Capitalization 0.54 Float_Capitalization 0.7 

Down_to_Up_Volatility 0.45 RI 0.46 RI 0.3 

2018.06 
Down_to_Up_Volatility 0.59 Down_to_Up_Volatility 0.57 Down_to_Up_Volatility 0.67 

RI 0.41 RI 0.43 RI 0.33 

 
TABLE Ⅶ   2019  FEATURE SELECTION AND NORMALIZATION OF WEIGHTS 

 Random Forest Weights SHAP Weights Permutation Importance Weights 

2019.01 
MACD 0.59 MACD 0.51 MACD 0.63 

Share_Turnover 0.41 Share_Turnover 0.49 Share_Turnover 0.37 

2019.02 

RI 0.61 RI 0.66 RI 0.66 

Down_to_Up_ 

Volatility 
0.39 ASI 0.34 Float_Capitalization 0.34 

2019.03 
MACD 0.76 MACD 0.76 MACD 0.76 

ATR 0.24 ATR 0.24 ATR 0.24 

2019.04 

ASI 0.78 ASI 0.79 ASI 0.88 

RI 0.22 
Down_to_Up_ 

Volatility 
0.21 ATR 0.12 

2019.05 

RI 0.54 RI 0.52 RI 0.51 

Down_to_Up_ 

Volatility 
0.46 

Down_to_Up_ 

Volatility 
0.48 

Down_to_Up_ 

Volatility 
0.49 

2019.06 
Share_Turnover 0.52 Share_Turnover 0.57 

Down_to_Up_ 

Volatility 
0.5 

RI 0.48 RI 0.43 RI 0.5 

 
TABLE Ⅷ  2018 OPTIMAL STOCK WEIGHTS 

January 
000581.SZ 600856.SH 600230.SH 000935.SZ 600782.SH 

0.187 0.178 0.177 0.238 0.22 

February 
603658.SH 600054.SH 002400.SZ 002128.SZ 000990.SZ 

0.211 0.194 0.202 0.185 0.208 

March 
603268.SH 300426.SZ 603098.SH 300429.SZ 603566.SH 

0.196 0.201 0.205 0.179 0.22 

April 
603019.SH 002432.SZ 300386.SZ 002569.SZ 002769.SZ 

0.195 0.195 0.212 0.18 0.219 

May 
600578.SH 601099.SH 601928.SH 600926.SH 603858.SH 

0.177 0.208 0.197 0.189 0.229 

June 
000089.SZ 002503.SZ 300073.SZ 002419.SZ 600718.SH 

0.191 0.21 0.198 0.201 0.2 

 

TABLE Ⅶ  2019 OPTIMAL STOCK WEIGHTS 

January 
300164.SZ 000996.SZ 002110.SZ 300171.SZ 300623.SZ 

0.182 0.185 0.275 0.134 0.223 

February 
000420.SZ 000429.SZ 000570.SZ 000338.SZ 000683.SZ 

0.277 0.2 0.198 0.175 0.15 

March 
000650.SZ 300294.SZ 300357.SZ 300031.SZ 600801.SH 

0.249 0202 0.188 0.149 0.212 

April 
000929.SZ 000888.SZ 002144.SZ 600509.SH 600259.SH 

0.234 0.163 0.203 0.214 0.186 

May 
603318.SH 000969.SZ 002511.SZ 600337.SH 000792.SZ 

0.147 0.214 0.201 0.245 0.193 

June 
600330.SH 603727.SH 600604.SH 601298.SH 002417.SZ 

0.19 0.213 0.194 0.197 0.207 

 
TABLE Ⅷ  2018 PORTFOLIO EARNING RATE  

 
Equal-Weight 

Model 

Shanghai 

Composite 
Index 

CSI 300 

Shenzhen 

Component 
Index 

Mean-CVaR 

January 10.90% 3.96% 4.61% -0.16% 10.97% 

February -2.60% -5.44% -5.23% -0.33% -2.49% 

March -0.74% -3.20% -3.72% -0.68% -0.57% 

April -5.73% -2.56% -3.35% -4.78% -5.81% 
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May 1.34% 0.46% 1.03% -0.46% 1.45% 

June -1.55% -7.41% -6.88% -7.77% -1.66% 

 

TABLE Ⅸ  2019 PORTFOLIO EARNING RATE 

 
Equal-Weight 

Model 

Shanghai 
Composite 

Index 

CSI 300 
Shenzhen 

Component 

Index 

Mean-CVaR 
 

January 3.59% 4.62% 4.84% 7.82% 5.02%  

February 10.57% 17.54% 12.33% 12.99% 11.68%  

March 12.11% 8.06% 3.23% 3.27% 12.45%  

April -7.04% -5.78% 2.90% -1.53% -6.60%  

May 8.26% -0.23% -0.27% -1.49% 9.09%  

June 1.44% 3.63% 3.07% 5.33% 1.50%  

 

 
Fig. 8.  2018 Interpretative Portfolio Return Distribution Plot 

 

 
Fig. 9.  2019 Interpretative Portfolio Return Distribution Plot 

 

IV.   CONCLUSION 

This article explores the integration of machine learning 

techniques with portfolio model optimization, introducing a 

method for constructing factor investment portfolios. This 

method combines sliding window MiniBatchKmeans 

clustering and Bayesian Random Forest, further optimized by 

the Mean-CVaR model. It creates a direct link between 

machine learning interpretability indicators and portfolio 

construction strategy formulation. 

The portfolio model construction process is as follows: 

Initially, superior equities are identified using 

MiniBatchKmeans clustering and Bayesian-optimized 

Random Forest. Then, the Mean-CVaR portfolio model is 

constructed with stocks that demonstrate a strong correlation 

to return explanatory factors, as determined through 

clustering. This approach allows for the calculation of 

specific investment proportions for each stock. 

The study conducts a numerical analysis using constituents 

of the CSI All-Share Index. The aim is to compare the 

Random Forest interpretability portfolio with other 

prominent indices and interpretability portfolios. Analysis 

results indicate that the Random Forest interpretability 

portfolio, created by clustering and selecting interpretative 

features from prediction results, outperformed the SHAP and 

Permutation interpretability portfolios and major indices in 

terms of returns. This highlights the Random Forest 

interpretability portfolio's effectiveness. 

Ultimately, the objective of this paper is to establish a link 

between the interpretability of machine learning and portfolio 

construction using an indicator-driven strategy. This 

approach emphasizes the potential importance of 

interpretability portfolios in asset allocation, offering 

valuable insights for investors and researchers. 
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APPENDIX 

TABLE I  STOCK FACTORS 

Sequence  Factor Name Description Additional description 

1 
Share 

Turnover 

Mean of the daily turnover 

rate sequence over the last K 

months. 

Daily Turnover Rate = 

Trading Volume / 

Free-Float Capital 

2 

Absolute 

Return to 

volume 

ILLI𝑄𝑖，𝑡=Avg(|𝑅𝑖,𝑑|/

𝑉𝑂𝐿𝐷𝑖,𝑑) 

𝑅𝑖,𝑑is the daily return 

rate of 

stock i during month t; 

𝑉𝑂𝐿𝐷𝑖,𝑑is the daily 

trading volume of 

stock i during month t 

3 
Earnings to 

Price Ratio 

Net profit attributable to the 

parent company in the last 12 

months (TTM) / Total Market 

Value 

The inverse of the 

Price-to-Earnings 

Ratio 

4 

Operating 

Cash Flow to 

Price Ration 

Net cash flow from operating 

activities in the last 12 months 

(TTM) / 

Total Market Value 

The inverse of the 

Price-to-Cash Flow 

Ratio 

5 
Long Term 

Reverse 

At the end of month t, 

calculate the cumulative daily 

return rate from month (t-59) 

to month (t-12) 

 

6 
Momentum 

Change 

Cumulative daily return rate 

from month (t-6) to month (t-

1) – 

Cumulative daily return rate 

from month (t-12) to month (t-

7) 

 

7 
Float 

Capitalization 

Closing price of the day / 

Free-float capital of the day 
 

8 Firm Size 
Closing price of the day / 

Total capital of the day 
 

9 

Book to 

Market 

Equity 

Total equity attributable to 

shareholders of the parent 

company in the latest 

reporting period / Total 

Market Value 

The inverse of the 

Price-to-Book Ratio 

10 
Idiosyncratic 

Volatility 

Standard deviation of residuals 

from CAPM or Fama-French 

3-factor model regression over 

the recent K months 𝑠𝑡𝑑(𝜀𝑖,𝑡) 

CAPM：𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 =

𝛼𝑖 + 𝛽𝑖(𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) +

𝜀𝑖,𝑡 

FF3-factor model: 

𝑟{𝑖,𝑡} − 𝑟{𝑓,𝑡}

=  𝛼𝑖

+ 𝛽{𝑚𝑘𝑡,𝑖}(𝑟{𝑚𝑘𝑡,𝑡}− 𝑟{𝑓,𝑡})

+ 𝛽{𝑆𝑀𝐵,𝑖}𝑆𝑀𝐵𝑡

+ 𝛽{𝐻𝑀𝐿,𝑖}𝐻𝑀𝐿𝑡
+ 𝜖{𝑖,𝑡} 

 

11 
Market 

Leverage 

Total assets of the latest 

reporting period / Total 

shareholder equity of the same 

period. 

 

12 
Down to Up 

Volatility 

𝐷𝑈𝑉𝑂𝐿𝑖

= log (
(𝑛𝑢 − 𝑙) ∑ (𝑟𝑖,𝑡 − �̅�𝑙)

2
𝑑

(𝑛𝑑 − 𝑙) ∑ (𝑟𝑖,𝑡 − �̅�𝑙)
2

𝑢

) 

𝑟𝑖,𝑡is the return of 

stock i at time t; 

𝑛𝑢is the number of 

days with returns 

above the average 

compound return; 

𝑛𝑑is the number of 

days with returns 

below the average 

compound return 

13 ASI Accumulative Swing Index  

14 MACD 
Moving Average Convergence 

Divergence 
 

15 ATR Average True Range  

16 RI Regional Index  
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